Differential Fault Analysis of SHA-3 under Relaxed Fault Models

نویسندگان

  • Pei Luo
  • Yunsi Fei
  • Liwei Zhang
  • A. Adam Ding
چکیده

Keccak-based algorithms such as Secure Hash Algorithm-3 (SHA3) will be widely used in crypto systems, and evaluating their security against different kinds of attacks is vitally important. This paper presents an efficient differential fault analysis (DFA) method on all four modes of SHA-3 to recover an entire internal state, which leads to message recovery in the regular hashing mode and key retrieval in the message authentication code (MAC) mode. We adopt relaxed fault models in this paper, assuming the attacker can inject random single-byte faults into the penultimate round input of SHA-3. We also propose algorithms to find the lower bound on the number of fault injections needed to recover an entire internal state for the proposed attacks. Results show that on average the attacker needs about 120 random faults to recover an internal state, while he needs 17 faults at best if he has control of the faults injected. The proposed attack method is further extended for systems with input messages longer than the bitrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relaxed Differential Fault Analysis of SHA-3

In this paper, we propose a new method of differential fault analysis of SHA-3 which is based on the differential relations of the algorithm. Employing those differential relations in the fault analysis of SHA-3 gives new features to the proposed attacks, e.g., the high probability of fault detection and the possibility of re-checking initial faults and the possibility to recover internal state...

متن کامل

Algebraic Fault Attack on the Sha-256 Compression Function

The cryptographic hash function SHA-256 is one member of the SHA-2 hash family, which was proposed in 2000 and was standardized by NIST in 2002 as a successor of SHA-1. Although the differential fault attack on SHA-1compression function has been proposed, it seems hard to be directly adapted to SHA-256. In this paper, an efficient algebraic fault attack on SHA-256 compression function is propos...

متن کامل

Seismicity of Batubesi Dam at Sorowako Region Based on Earthquake Data and Microtremor Measurement

Batubesi Dam which is located in Sorowako region in the middle part of Sulawesi island had been designed with seismic coefficient about 0.20g. The region constitutes an active earthquake zone with the recurrence frequency and magnitude of the earthquake are relatively high. The region is located on and active fault zone due to lateral fault movement (strike-slip) of Matano fault, Palukoro fault...

متن کامل

Fault Attacks Resistant Architecture for KECCAK Hash Function

The KECCAK cryptographic algorithms widely used in embedded circuits to ensure a high level of security to any systems which require hashing as the integrity checking and random number generation. One of the most efficient cryptanalysis techniques against KECCAK implementation is the fault injection attacks. Until now, only a few fault detection schemes for KECCAK have been presented. In this p...

متن کامل

Diagnosis of Different Types of Air-Gap Eccentricity Fault in Switched Reluctance Motors Using Transient Finite Element Method

This paper presents a method for diagnosis of eccentricity fault in a switched-reluctance motor (SRM) during offline and standstill modes. In this method, the fault signature is differential induced voltage (DIV) achieved by injecting diagnostic pulses to the motor windings. It will be demonstrated by means of results that there is a correlation between differential induced voltage and eccentri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017